If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-12=0
a = 10; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·10·(-12)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*10}=\frac{0-4\sqrt{30}}{20} =-\frac{4\sqrt{30}}{20} =-\frac{\sqrt{30}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*10}=\frac{0+4\sqrt{30}}{20} =\frac{4\sqrt{30}}{20} =\frac{\sqrt{30}}{5} $
| g^2+13=0 | | 3/5s=42 | | g^2+10g+9=0 | | 8=3(c+8 | | 2.4/x=-4 | | .4x+-4=x-(-8) | | 3r-7=22 | | z2-12z+36=0 | | r+7=r-12 | | .4x+(-4)=x-(-8) | | (x+5)^2=5 | | x/3.4=5 | | Y=0.494x-973.3 | | Y1=3(2x-5)=Y2=2(3x-1)-13 | | Y1=3(2x-5)=Y2=2(3x-1)+7 | | 6-10=y+25 | | 5x—10=15 | | 5(1/5+x)=8/3 | | 3^2x=9^2x+4 | | 5x+9-7×=5 | | -3(2p+1)+4(2p-3=2p-15 | | 24.8=-6.2y | | 3/14x=39/14 | | 15=5x—10 | | 5(15x+75)=975 | | 307/9+x=137/9 | | -2(5-3x)=5=9+3x | | 4-2f=1 | | X-2x+3=25+3x+2 | | -2(5-3x)=5=9=3x | | 3x+x+3=6x—x+1 | | Y=7x-3/16 |